skip to main content


Search for: All records

Creators/Authors contains: "Jonchhe, Sagun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 9, 2024
  2. Abstract

    Both ligand binding and nanocavity can increase the stability of a biomolecular structure. Using mechanical unfolding in optical tweezers, here we found that a DNA origami nanobowl drastically increased the stability of a human telomeric G-quadruplex bound with a pyridostatin (PDS) ligand. Such a stability change is equivalent to >4 orders of magnitude increase (upper limit) in binding affinity (Kd: 490 nM → 10 pM (lower limit)). Since confined space can assist the binding through a proximity effect between the ligand-receptor pair and a nanoconfinement effect that is mediated by water molecules, we named such a binding as mechanochemical binding. After minimizing the proximity effect by using PDS that can enter or leave the DNA nanobowl freely, we attributed the increased affinity to the nanoconfinement effect (22%) and the proximity effect (78%). This represents the first quantification to dissect the effects of proximity and nanoconfinement on binding events in nanocavities. We anticipate these DNA nanoassemblies can deliver both chemical (i.e. ligand) and mechanical (i.e. nanocavity) milieus to facilitate robust mechanochemical binding in various biological systems.

     
    more » « less
  3. Mechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s −1 shear rate. We found that the larger the molecules, the higher the exerted shear forces. This shear force approach revealed affinity between ligands and i-motif structures. It also demonstrated a mechano-click reaction in which a Cu( i ) catalyzed azide–alkyne cycloaddition was modulated by shear force. We anticipate that this ensemble force spectroscopy method can investigate intra- and inter-molecular interactions with the throughput, accuracy, and robustness unparalleled to those of SMFS methods. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    In Tau protein condensates formed by the Liquid–Liquid Phase Separation (LLPS) process, liquid‐to‐solid transitions lead to the formation of fibrils implicated in Alzheimer's disease. Here, by tracking two contacting Tau‐rich droplets using a simple and nonintrusive video microscopy, we found that the halftime of the liquid‐to‐solid transition in the Tau condensate is affected by the Hofmeister series according to the solvation energy of anions. After dissecting functional groups of physiologically relevant small molecules using a multivariate approach, we found that charged groups facilitate the liquid‐to‐solid transition in a manner similar to the Hofmeister effect, whereas hydrophobic alkyl chains and aromatic rings inhibit the transition. Our results not only elucidate the driving force of the liquid‐to‐solid transition in Tau condensates, but also provide guidelines to design small molecules to modulate this important transition for many biological functions for the first time.

     
    more » « less
  7. Abstract

    In Tau protein condensates formed by the Liquid–Liquid Phase Separation (LLPS) process, liquid‐to‐solid transitions lead to the formation of fibrils implicated in Alzheimer's disease. Here, by tracking two contacting Tau‐rich droplets using a simple and nonintrusive video microscopy, we found that the halftime of the liquid‐to‐solid transition in the Tau condensate is affected by the Hofmeister series according to the solvation energy of anions. After dissecting functional groups of physiologically relevant small molecules using a multivariate approach, we found that charged groups facilitate the liquid‐to‐solid transition in a manner similar to the Hofmeister effect, whereas hydrophobic alkyl chains and aromatic rings inhibit the transition. Our results not only elucidate the driving force of the liquid‐to‐solid transition in Tau condensates, but also provide guidelines to design small molecules to modulate this important transition for many biological functions for the first time.

     
    more » « less
  8. null (Ed.)